因为他还没有将引力的影响纳入到他的理论中,——关于复几何领域高维空间的单值化的猜想

正规十大娱乐网站 4

因为他还没有将引力的影响纳入到他的理论中,——关于复几何领域高维空间的单值化的猜想

| 0 comments

演讲人:刘克峰(浙江大学数学中心执行主任兼数学系主任、光彪讲座教授、美国加州大学洛杉矶分校数学系教授)时
间:2010年10月12日地 点:上海世博会法国馆开场白
法国高等科学研究院(IHES),位于法国巴黎郊外的一个从事数学和理论物理的基础研究的私立研究机构。在上海举办世博会期间,该院联系到法国馆,于2010年10月12日在法国馆的报告厅,举办了一个极富特色的“会见解码者”公众报告会,由八位法国顶级的数学家与中国数学家一起,为中国公众做了一系列的学术报告,目的是吸引公众来了解一些现代数学,会见一些在一线工作的第一流数学家。数学家们以公众可以接受的语言,深入浅出地介绍现代数学的一些美妙结果,这样的大数学家和公众见面交流的机会,在世界范围内都是不多见的。我们从中撷取法国和中国几位专家的报告,以飨读者。曾经有一些伟大的数学公式改变了人类历史的进程,如牛顿的第二力学定律,F=ma,爱因斯坦的质能方程,E=mc^2,以及牛顿的万有引力定律。这些公式极其简单,却蕴含了万物的相互作用和变化规律。今天我们能够制造飞船登上月球,能够利用核能量为人类服务,这些公式为此提供了重要的理论基础。这些美妙的公式也印证了老子的名言:“大道至简。”“政治是暂时的,而数学方程式是不朽的。”古今科学家们都坚信,数学是表达大自然规律最好的语言。任何科学理论最终和最完美的表达方式应该是数学方程式。爱因斯坦曾说过:“政治是暂时的,而数学方程式是不朽的。”作为数学家和物理学家,我们苦苦追寻的就是这样的方程式,它们简单、漂亮,能够深刻地揭示大自然的奥秘。历史上有许多伟大的数学物理学家,比如阿基米德,他发现了杠杆原理和穷竭法;牛顿,发现了万有引力定律,发明了微积分;欧拉,发现了流体力学的欧拉方程和数学的变分法;高斯,发现了电磁场的高斯定律,也奠定了微分几何基础;爱因斯坦,其广义相对论不仅是宇宙学的基础,也推进了现代微分几何与微分方程的发展。在历史上,最成功的两个物理理论是量子场论和广义相对论许多主要的数学领域,也是由于物理的刺激而发展起来的,如微分方程、微分几何、算子代数等等。我这里要阐述的是近三十年来由弦理论激发出的一系列数学成果。在历史上,最成功的两个物理理论是量子场论和广义相对论,他们分别精确地描述了微观世界里的粒子和宏观世界里的星球的运动规律。量子场论中的基本方程是薛定谔方程,广义相对论的基本方程是爱因斯坦场方程,它们在一定程度上却互不相容。从爱因斯坦开始,几代物理学家梦寐以求的就是将这两组方程统一到同一个理论框架下,这样大至星球,小到粒子这些宇宙万物的运行规律和相互作用都由这一组方程式来描述。这就是大统一理论,被人们称为“万有理论”,或者“终极理论”。经过几代物理学家的努力和无数次的失败,弦理论到目前为止被认为最有希望完成大统一的梦想。弦理论的基本假设是,宇宙最基本的粒子是一些高速震荡的弦。就像振颤的小提琴琴弦给我们美妙的旋律一样,弦理论中这些震动的弦作为最基本的元素构成了我们五彩缤纷的世界。大统一理论应该是唯一的,但是在过去三十年间,弦论学家们发展了五种自恰的弦理论,这五种理论看起来很不相同,但每一种都很合理地揭示了一些物理中的奥秘。在1994年的第二次弦理论革命中,威滕提出了M-理论将这五种理论联系在一起,发现它们彼此是通过弦对偶互相等价的。我们说两种理论相互对偶,如果他们可以描述同一种物理现象。过去十几年间,弦对偶已经产生出了很多惊人的数学与物理成果。把在不同的弦理论中的计算公式通过对偶等同起来,人们得到了许多令人叹为观止的数学公式和方程。数学中的流形翻译于英文的manifold,取自于文天祥的著名诗句:天地有正气,杂然赋流形,下则为河岳,上则为日星。弦理论中一个最基本的研究对象是卡拉比—丘流形。数学中的流形翻译于英文的manifold,取自于文天祥的著名诗句:天地有正气,杂然赋流形,下则为河岳,上则为日星。它可以描述任何可以用局部平坦空间所覆盖的物体。在1976年,丘成桐先生证明了著名的卡拉比猜想,此猜想断言,任何第一陈类为零的特殊流形,叫作紧凯勒流形,都具有黎奇平坦的度量,这一类流形现在被称为卡拉比—丘流形。而这里的陈类是以陈省身先生的名字命名的一种深刻的几何不变量,由陈先生在上世纪四十年代所发现。复三维的卡拉比—丘流形在弦理论中非常重要,它们代表着弦理论所需要的,我们目前无法看到的四维时空之外的六维空间。弦理论断言,有了这神秘的六维空间,就有了万有理论。通过比较不同弦理论的数学描述,人们常常发现意外而深刻的数学猜想,得到许多令人兴奋的数学结果。比如镜对称,大N陈—赛蒙斯与拓扑弦理论的对偶。而所有这些又往往与卡拉比—丘流形紧密地联系在一起。通过弦对偶,人们找到了实三维流形的拓扑几何与复三维流形的复几何之间的惊人联系。很多困难的数学计算,在转化到实的三维空间后变得异常简单。而实三维和四维空间中的一些意想不到的联系也通过复三维的卡拉比—丘流形被发现。基于对偶理论的猜想和新的想法,许多困难的数学问题得到解决,而这些新的方法和结果又往往是数学家们此前连做梦都想不到的。这些来自弦对偶的猜想的解决又反过来帮助物理学家最精确地验证了这些物理理论的正确性,这也是当今世界还无法用传统的试验方法能够做到的。“上帝是个数学家”为了让大家能够对历史上数学与物理之间激动人心的交融有所了解,我这里介绍几个我过去二十年间亲身经历的例子。我们将看到卡拉比—丘流形与弦对偶在这些进展中所起的奇妙作用。我的第一个例子是IIA与IIB两种弦理论的对偶,这也被称为镜对称理论。这种对偶的一个基本的假设是,一个卡拉比—丘流形都有它的一个镜像,它们描述等价的物理理论。通过镜对称理论得到的最惊人的数学发现是著名的坎德拉斯镜公式。这个1991年发现的公式曾经令数学界与物理学界都兴奋异常。它使得数学家们开始密切关注弦论的进展,而物理学家们也开始学习最深刻的数学。这里涉及的数学问题有近百年的历史。数学家们一直想要计算出,对每一个给定的正整数,我们称作阶,在一个特殊的卡拉比—丘流形,即五次卡拉比—丘超曲面中有多少条有理曲线。用更通俗的语言就是说在这个特殊的卡拉比—丘空间中,对每一个阶,我们能够放进多少个球。当阶为1的时候,我们知道为2875,而阶为二的时候为60925。这两个数字的计算曾花费了数学家上百年的时间。令人惊奇的是,这个问题在IIA弦理论的计算中也出现了,他们把这些数叫做瞬子数。通过镜对称理论,坎德拉斯研究小组把这个问题转化为IIB弦理论中一个简单的,计算镜像卡拉比—丘流形的周期问题,而这只需要求解一个常规的四阶常微分方程。这样我们就可以一下子非常轻松地算出所有想要的数字。比如3阶时,我们得到317206375;而10阶时,我们会得到704288164978454686113488249750。坎德拉斯公式在1997年由我与连文豪、丘成桐以及吉文图分别独立证明。陈省身、杨振宁、丘成桐是三位伟大的华人科学家。陈省身的重要贡献包括陈—韦伊理论和陈—赛蒙斯理论,这都与他的陈类相关;除了以宇称破缺获得诺贝尔奖;杨振宁在理论物理中以杨—米尔斯方程和杨—巴克斯特方程最为著名;丘成桐则以卡拉比—丘流形,正质量猜想的证明而广为人知.他们的这些贡献在数学与理论物理中都有划时代的意义.我们将看到他们的工作通过弦对偶理论深刻地联系在一起。在过去二十年间,通过几何工程化技巧,弦论学家们已经成功地把陈—赛蒙斯、杨—米尔斯理论等同为弦理论的一部分。通过弦对偶,人们发现了许多与扭结不变量,黎曼面模空间等有关的惊人而美妙的数学公式。这其中很关键的工具是诺贝尔奖获得者特胡福特的大N展开技巧,就是在李群SU(N)中令N趋于无穷,并以此发现全新的现象。1986年,当代伟大的弦论学家威滕首先意识到陈—赛蒙斯理论是一种量子场论,并用它构造出了扭结不变量,即著名的琼斯不变量。随后数学家用量子群重新构造了扭结与三维流形的不变量,这样陈—赛蒙斯不变量就可以通过量子群来构造。而量子群中最基本的方程就是杨—巴克斯特方程。黎曼面的模空间是经过几代伟大数学家的发展而成为数学许多学科中最基本的研究对象,对许多研究领域的发展起到了重要的作用,许多数学工具也都可以应用到模空间的研究中去。计算模空间上的浩治积分是很重要也很困难的数学问题。从1980年开始,经过近十年的努力,数学家们也只能计算出一些很简单的特例。直到1990年,威滕根据物理中的矩阵模型与二维引力场的对偶作了一个惊人的猜测,认为一大类浩治积分的无穷生成函数满足一系列的偏微分方程。1992年,康切维奇证明了这个猜想,这揭开了这个研究领域激动人心的序幕。在2007年,通过找出威滕方程的循环精确解,我与徐浩证明了著名的法波猜想。数学家法波1992年提出的这个猜想给出了无穷多个浩治积分精巧的显式表达式。在过去的二十年间里,通过对卡拉比—丘流形做手术,威滕、大栗博司、瓦法等一批弦论学家把陈—赛蒙斯理论系统地发展成为弦理论的一部分。基于这一理论,在2001年,对于一大类浩治积分的无穷生成函数,马利诺和瓦法提出了一个由陈—赛蒙斯不变量表达的有限闭公式猜测。在2003年,我与刘秋菊、周坚一起证明了这个漂亮的公式。而前面提到的威滕猜想和其他几个有关浩治积分的著名公式都可以通过对马利诺—瓦法公式求极限来得到。弦论学家拉巴斯提达、马利诺、大栗博司、瓦法等进一步发展了陈赛蒙斯理论并将其与M理论联系在一起。2000年他们作出了另一个惊人的猜测,我们称作LMOV猜想。他们的猜想宣称由无穷多个陈—赛蒙斯扭结不变量组成的生成函数具有不可思议的代数性质并可以转化成另一个整系数的生成函数。在2007年我与彭磐一起证明了LMOV猜想。在上面的几个例子里,我们从弦理论中学到了生动的一课。很多时候计算单个的积分也许会非常困难,但把无穷多个积分放在一起的生成函数可能会很容易一起算出来,因为这些生成函数往往满足一些犹如天赐的规律和方程。受弦论学家的启发,数学家们发展了一系列新的猜测来理解一些不变量的整性,而这些新的不变量本质上都是从陈—赛蒙斯或者杨—米尔斯理论中来的。到这里我们看到,陈省身、杨振宁、丘成桐这三位伟大的华人科学家的工作通过弦理论密切地联系在了一起。数学中还有其他许多由物理启发出来的激动人心的发展。数学家唐纳森在1980年用杨—米尔斯理论革命性地推动了四维拓扑学的进步;物理学家赛博格—威滕在1996年发现了著名的新方程,再次革新了低维拓扑学。受弦理论的启发,在2002年,佩雷尔曼扩展了哈密尔顿的黎奇流,这是他开始解决庞加莱猜测的出发点。1986年数学家与弦论学家们互相启迪,并一起发现了椭圆亏格,把几何中的指标理论与数论中的模形式神奇地联系在一起,而指标理论中的关键是物理学家狄拉克发明的狄拉克算子。1990年,通过研究共形场论,弦论学家维林德发现了著名的维林德公式,给出了黎曼面上平坦向量丛模空间上一个奇妙的公式,这立刻刺激了这个领域的飞速发展。数学家辛钦受物理的启发,构造了西格斯模空间,而这个模空间是2010年费尔兹奖得主吴宝珠解决基本引理的基础。综上所述,我们看到,弦理论帮助数学家们发现了数学中许多主流分支之间不可思议的联系,他们的想法和远见帮助数学家解决了许多极为困难的数学问题。由此,物理的大统一理论引发出了数学大统一理论的可能性。从这个意义上讲,我们也许可以说:“上帝是个数学家。”成功=工作+玩耍+闭上嘴巴最后,我想把爱因斯坦的一个有趣的公式送给国内的孩子们。令A代表生活中的成功,X代表工作,Y代表玩耍,Z代表闭上嘴巴。那么,我们有A=X+Y+Z。我想说的是现在的孩子们也许玩儿得太少了,过多的考试消磨了他们创造力,所以我们的教育至今还没有培养出大师。(2011-01-17)

物理领域的重大突破有时需要数学的协助,反之亦然。

澳门正规网上大赌场 ,中国科学技术大学数学科学学院“千人计划”陈秀雄教授和英国数学家、菲尔兹奖得主唐纳森(Donaldson),及科大年轻校友、陈秀雄教授前学生孙崧博士合作,成功解决了第一陈类为正时的“丘成桐猜想”。近日,他们的三篇系列论文发表在国际顶级数学期刊《美国数学会杂志》(Journal
of the American Mathematical Society)上。

1905年,爱因斯坦提出了狭义相对论,将时间和空间联姻,这使我们对宇宙的理解发生了革命性的变化。然而,狭义相对论的成功,并没有阻止他进一步地探索更深层的问题,因为他还没有将引力的影响纳入到他的理论中。

正规十大娱乐网站 ,为了解释万有引力的本质,爱因斯坦于1916年创立广义相对论,并试图用一个二阶非线性偏微分方程组来度量引力场,也就是有名的“卡勒—爱因斯坦度量”(Kahler—Einstein度量)。后来的物理学家进一步发展出“弦”理论,在弦论里,我们的宇宙是十维的时空,即通常的四维时空,和一个很小的六维空间,而这些复杂的高维空间必须是“卡勒—爱因斯坦度量”。一直以来它们只在理论物理学家的推演和数学家的计算中。

七年后,当时在苏黎世联邦理工学院的爱因斯坦,正酝酿着一个可以颠覆牛顿万有引力定律的理论。但是,爱因斯坦在扩展狭义相对论时却遇到了难题,他必须通过使用一些新的方法和技巧才有可能完成这一壮举。幸运的是,爱因斯坦的好朋友和同事格罗斯曼(Marcel
Grossmann)伸出援手,带来了一个十分令人激动的优雅方法:黎曼几何。

在探索高维空间的过程中,1954年,意大利著名几何学家卡拉比在国际数学家大会上提出了一个伟大猜想:复杂的高维空间是由多个简单的多维空间“粘”在一起,因为简单的多维空间目前有成熟的数学工具能够进行解析,如果高维空间能够拆解,也就意味着高维空间可通过一些简单的几何模型拼装得到。这就是著名的“卡拉比猜想”——关于复几何领域高维空间的单值化的猜想,同时这也是求证高维空间上“卡勒-爱因斯坦度量”存在的猜想。

正规十大娱乐网站 1

网赌网址 ,“卡拉比猜想”按照第一陈类(注:国际数学大师陈省身先生1945年发现复流上有反映复结构特征的不变量,后被命名为“陈省身示性类”,简称“陈类”,对整个数学界乃至理论物理的发展产生广泛而深刻的影响)为负、零、正分为三种情况。直到二十多年后,陈省身的弟子丘成桐才攻克了陈类为负和零的“卡拉比猜想”(其中陈类为负的情形由丘成桐和法国数学家奥宾各自独立解决),他也因此在1982年获得数学领域的诺贝尔奖——“菲尔兹”奖。

数学和物理的共同演化

澳门十大网上博网址网赌最佳平台 ,据专家介绍,数学家们的长期工作显示,关于卡比拉猜想中第一陈类为正的高维空间只有在满足特定条件下,“卡勒-爱因斯坦度量”才有可能存在。这个问题因此难度倍增,困扰学界几十年。丘成桐提出猜想,认为可将第一陈类为正的高维空间上的卡勒-爱因斯坦度量的存在性问题转化为代数几何的稳定性问题。这被认为是“复几何领域自卡拉比猜想解决后最重要的问题”。

网赌网站排名 ,△
黎曼在19世纪发展出了一套特殊的曲率几何概念时,他丝毫没在意过物理学。那时的他绝对想不到,在20世纪初,他的工作会在爱因斯坦的笔下为物理学的革命性发展起到推波助澜的作用。|
图片来源:symmetrymagazine

在陈—唐纳森—孙的系列论文中,他们给出了卡勒-爱因斯坦度量的存在性之丘成桐猜想的完整证明。根据唐纳森教授2008年提出的研究纲领,结合微分几何、代数几何、多复变函数、度量几何等多个数学分支的方法,经过多种方法创新,他们终于最终解决了第一陈类为正时的“丘成桐猜想”。

十九世纪中叶,德国数学家黎曼(Bernhard
Riemann)发展了黎曼几何的数学框架。在当时,黎曼几何本身就是一个具有革新性的框架。不同于之前将数学图形看成是三维空间的子集,黎曼几何通过更本质的方法直接研究图形的性质。例如,一个球可被看作是三维空间内所有距离原点刚好为1的点的集合。但它也可以被视为每一个点都有着特殊曲率属性的二维物体。后面的这种定义对于理解球这样的几何图形来说或许不是那么重要,但对于更复杂的流形和更高维的空间,这种定义的价值就显而易见了。

十大赌博信誉平台 ,《美国数学会杂志》审稿人评价说:“陈—唐纳森—孙的证明是突破性的,它不仅解决了一个基本性的问题,同时还发展了许多新颖有力的工具,以揭示卡勒几何、代数几何和偏微分方程之间的深刻联系。”国际数学大师德马依称:“无庸赘述,这一进展已在全世界范围内引起了强烈的反响。”这项重大国际研究成果的取得有赖于对近20年来各个领域众多数学家取得的基础性成果的关键运用,也标志着卡勒几何的研究达到一个全新的高度。这一突破也有望在代数几何以及“弦”论等理论物理上获得更多的重要应用。

澳门大赌场app ,在1912年的时候,黎曼几何依然是一个新颖的理论,还未完全渗透到数学领域,但它正好是爱因斯坦所需要的。黎曼几何赋予爱因斯坦一个强大的数学基础,使他得以构建出一个全新的引力理论——广义相对论的准确等式。1913年,爱因斯坦和格罗斯曼发表了他们突破性的工作。理论物理学家
Peter Woit
认为“如果没有数学家的帮助,很难想象爱因斯坦怎样才能完成相对论的工作。”

(科研部、新闻中心报道)

广义相对论的故事当然能让数学家们感到骄傲。在这个故事里,数学仿佛就像是一个引路人,在恰当的时机出现在物理学家的身边,为一片灰暗的物理学世界带来光明。

相关论文链接:

但是,数学和物理的相互影响远比这个故事里讲述的更复杂。在大部分有记录的历史中,物理和数学甚至不是分开的学科。古希腊、埃及和巴比伦的数学认为我们生活在一个距离、时间和重力都按某种特定方式运行的世界中。

陈秀雄教授简介:

布朗大学的物理学家 Sylvester James Gates
说,“牛顿是第一个为了达到学术巅峰而发明一项新的数学领域的物理学家。这个数学领域就是微积分。”

陈秀雄教授出生于浙江省青田县,
1987年毕业于中国科大数学系,之后师从彭家贵教授,于中国科学技术大学研究生院获硕士学位。1989年他赴美国宾夕法尼亚大学学习,1994年毕业,是著名几何学家卡拉比教授的最后一位博士生。2008年夏,他受唐纳森教授之邀共同研究卡勒-爱因斯坦度量的存在性,一直合作研究该课题至今。

微积分让解决一些经典的几何问题变得更加简单,但其最初的目的是为牛顿提供了一种分析运动的新方法,以及改变了牛顿观察物理的视角。在这个关于微积分的故事中,数学更像是一个让一切事物变得井然有序的管家,而不是在危难关头力挽狂澜的救世主。

陈秀雄教授曾应邀在第24届国际数学家大会上作45分钟邀请报告。2008年被聘为中国科大“长江学者讲座教授”,2009年被聘为中国科大首批“大师讲席”教授,并入选国家第二批“千人计划”。他长期致力于中国科大的人才培养引进与国际学术交流,自2004年起,连续9年组织几何学暑期学校,于2006年在科大创办PacificRimComplexGeometry国际会议,为我校数学学科的人才培养和学术交流做出了贡献。他的学生孙崧、王兵等已在国际上成长为优秀的青年数学家。

即使物理和数学成为了两个学科之后,他们之间仍然是紧密联系的。“回溯物理和数学的早期发展历程,你会发现确定一个人是物理学家还是数学家是很困难的。”
Woit说道。

媒体关注:

正规十大娱乐网站 2

[人民日报]中外数学家联手破解丘成桐猜想

数学和物理的共同演化

[光明日报]几何分析领域实现重大突破:数学家破解“丘成桐猜想”

△ 诺特(Emmy
Noether)将自然界中的对称性和守恒定律联系了起来,可以说她是史上最具深刻洞见的数学物理学家之一。对于一些数学家而言,看到诺特的名字出现在物理学领域是令人惊讶的,因为他们多数是通过抽象代数才了解她的。|
图片来源:symmetrymagazine

[新华网]中英数学家破解“卡勒—爱因斯坦度量”存在性之丘成桐猜想

纵观历史,数学和物理这两个领域都给对方提供过重要的概念。数学家外尔(Hermann
Weyl)在李群(Lie
group)方面的工作就为理解量子力学中的对称性提供了非常重要的基础。理论物理学家狄拉克在他1930年的著名书籍《量子力学原理》中,就使用了狄拉克道尔塔函数来描述粒子物理中点粒子的概念(点粒子描述的是任何小到可以用一个点来模拟的理想化情况)。
二维的δ函数在x=0的位置的值为无穷大,而在其他任何地方都为0。
狄拉克声明δ函数的积分、也就是δ函数所覆盖的面积为1。严格地讲,并不存在具有这种性质的函数。但是狄拉克对δ函数的使用最终启发了数学家施瓦茨(Laurent
Schwartz),他用严密的数学方式发展出了分布理论。现如今,分布理论在常微分方程和偏微分方程领域已经变得极为重要。

[中新网]中英数学家联手破解“丘成桐猜想”

尽管现代研究人员对自身领域的关注越来越多,研究领域的细化和专业化也越来越明显,但物理和数学的界限仍然模糊。一个物理学家可以获得数学领域最具权威的奖项之一——菲尔兹奖。而一个数学家,比如Maxim
Kontsevich,也可同时获得科学突破奖的物理奖和数学奖。现在,人们可以参加由数学系或者物理系举办的关于量子场论、黑洞或者弦论的研讨会。自2011年起,弦数学(String
Math)的年度讨论会议就把数学家和物理学家汇聚到了一起,让他们一同研究弦论和量子场论中的交叉领域。

[科技日报]中英数学家破解丘成桐猜想 “卡勒—爱因斯坦度量”获完整证明

弦论可能是关于数学和物理互相影响的最佳示例。在弦论的理论框架中,狄拉克所描述的点粒子变成了一维的弦。这个理论模型中的一部分描述了一种被称为引力子的理论粒子,这是一种传递引力的假想粒子。

[中国科学报]数学家成功破解“丘成桐猜想”

大多数人认为我们通过三维的空间和一维的时间来感知宇宙。但是弦论却是构架在十维中的。在1984年,随着研究弦论的物理学家激增,包括后来被授予菲尔兹勋章的物理学家威滕(Edward
Witten)在内的一批研究人员发现了弦论所需空间中的另外六个维度,被称为卡拉比-丘流形(Calabi-Yau
manifold)。

[大公报]中英數學家破解丘成桐猜想

正规十大娱乐网站 3

[安徽日报]中英数学家联手攻克“丘成桐猜想”

数学和物理的共同演化

[深圳特区报]中英数学家合作 破解丘成桐猜想

△ 六维卡拉比-丘流形。| 图片来源:Jeff Bryant / Visualization

当数学家们还在为阐明各种流形的结构而争吵时,物理学家只希望能获得几个可能有效的数学结果,他们找到了卡拉比-丘流形。而数学家却还不能确定他们对流形的划分是正确的。

当物理学家和数学家研究这些空间结构的时候,他们发现卡拉比-丘流形具有非常有趣的对偶性。两个看起来完全不同的流形可能描述的是同一种物理结构。这背后的思想被称为镜像对称。这种性质的研究在数学中迅速繁荣,并形成了一个全新的数学分支。弦论的框架几乎成为了数学家的游乐场,带来了无数新的研究分支。

正规十大娱乐网站 4

数学和物理的共同演化

△ 镜像对称。| 图片来源:Mike Zeng/Quanta Magazine

加州大学伯克利分校的理论物理学家Mina
Aganagic认为,弦论和相关的课题将会继续提供更多数学和物理之间的联系。

她说:“在某种意义上,我们只探索了弦论非常小的一部分和它少数的预测。”数学家和他们对细节的严格证明的关注给这个领域带来了一种角度的视野,而物理学家们喜欢把直觉理解放在优先位置的倾向则为我们带来另一种视角。Mina评价道:“正因为如此,才使得数学与物理的关系如此令人满意。”

数学和物理的关系可以追溯到他们的起源;当它们不断发展,数学和物理的纠缠也越来越深,它们的关系变得越来越复杂。看起来它们的关系将一直这样持续下去。来自数学的已经成熟的计算工具可以为物理学家提供大量的帮助。而来自物理学的探索性问题也可以激励数学家创造出全新的数学模型和概念。

​​​​

相关文章

发表评论

Required fields are marked *.


网站地图xml地图